ASTROCYTES IN HIGH BRAIN FUNCTION
ABSTRACT
In addition to their well characterized supportive and homeostatic roles, pioneering studies have shown that astrocytes directly affect neuronal activity. In recent years, groundbreaking research revealed many surprising roles for astrocytes in modulating neuronal activity and even behavior. To directly and specifically modulate astrocytic activity we employed a chemogenetic approach: We expressed the Gq-coupled designer receptor hM3Dq or the Gi-coupled designer receptor hM4Di in astrocytes, which allowed their time-restricted activation or inhibition (respectively) by the application of the designer drug clozapine-N-oxide (CNO). We discovered that in-vivo, astrocytic Gq activation enhanced memory allocation, and memory performance, also in Alzheimer mice (non-published data). On the other hand, astrocytic Gi pathway activation during memory acquisition impairs remote, but not recent, recall. We show that this effect is mediated by a specific disrupting of the projection from the hippocampus to the anterior cingulate cortex by astrocytes. What other high brain functions can astrocytes affect? We chronically imaged dozens of CA1 astrocytes using 2-photon microscopy, in mice that ran on a linear treadmill and proceed in a virtual environment to obtain water rewards. We find that astrocytic activity persistently ramps towards the reward location in a familiar environment. When the reward location was changed in the same environment or when mice were introduced to a novel context, the ramping was not apparent. Following additional training, as the mice were familiarized with the new reward location or novel context, the ramping was reestablished, suggesting that spatial modulation of astrocytic activity is experience dependent. This is the first indication that astrocytes can encode position related information in learnt spatial contexts, thus broadening their known computational abilities, and their role in cognitive functions. We are continuing to look for higher brain function (now – memory engrams!, another piece of non-published data that I will present) in which astrocytes are involved.